Final exam Linear Algebra II Thursday 04/04/2024, 15:00-17:00, Martini Plaza

$1 \quad(9=3+2+4 \mathrm{pts})$
Subspaces and bases

Let \mathcal{V} be the \mathbb{R}-vector space of all functions $f: \mathbb{N} \rightarrow \mathbb{R}^{n}$, where $\mathbb{N}=\{1,2, \ldots\}$. Here the addition of functions $f, g \in \mathcal{V}$ is defined as $(f+g)(k)=f(k)+g(k)$ for all $k \in \mathbb{N}$, while scalar multiplication is defined as $(a f)(k)=a f(k)$ for $a \in \mathbb{R}$ and $f \in \mathcal{V}$. In this exercise we will consider the set

$$
\mathcal{S}:=\{f \in \mathcal{V} \mid f(k+1)=T(f(k)) \forall k \in \mathbb{N}\}
$$

where $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear operator.
(a) Prove that \mathcal{S} is a subspace of \mathcal{V}.
(b) Let $x \in \mathbb{R}^{n}$. Show that f, defined by $f(k)=T^{k-1}(x)$ for all $k \in \mathbb{N}$, is in \mathcal{S}.
(c) Find a basis for \mathcal{S}. Motivate your answer.

$$
\mathbf{2} \quad(9=2+2+2+3 \mathrm{pts})
$$

Inner product, injective, bijective, adjoint

Let V and W be two inner product spaces over \mathbb{C}. The inner product on V we denote as $\langle\cdot, \cdot\rangle_{V}$ and the one on W as $\langle\cdot, \cdot\rangle_{W}$. We call a \mathbb{C}-linear transformation $T: V \rightarrow W$ unitary if $\left\langle v_{1}, v_{2}\right\rangle_{V}=\left\langle T\left(v_{1}\right), T\left(v_{2}\right)\right\rangle_{W}$ for all $v_{1}, v_{2} \in V$.
(a) Taking $V=\mathbb{C}^{2}$ and $W=\mathbb{C}^{3}$ (both with the standard Hermitian inner product), show that T : $V \rightarrow W$ given by $\binom{z}{w} \mapsto\left(\begin{array}{c}z \\ w \\ 0\end{array}\right)$ is unitary but not surjective.
(b) Prove that for every V, W as above, every unitary $T: V \rightarrow W$ is injective.
(c) Now suppose that moreover $\operatorname{dim} V=\operatorname{dim} W<\infty$ and that $T: V \rightarrow W$ is unitary. Prove that T is bijective.
(d) In the situation of (c), show that T^{-1} is the adjoint of T.

Consider a \mathbb{C}-inner product space V of dimension 2 over \mathbb{C}, and two independent vectors $v_{1}, v_{2} \in V$. The goal of this exercise is to describe all possible inner products on V.
(a) Suppose that $\langle\cdot, \cdot\rangle$ is an inner product on V. Put $a:=\left\langle v_{1}, v_{1}\right\rangle$ and $b:=\left\langle v_{2}, v_{2}\right\rangle$ and $c:=\left\langle v_{1}, v_{2}\right\rangle$. For an arbitrary pair $v=\alpha v_{1}+\beta v_{2}, w=\gamma v_{1}+\delta v_{2}$ in V (with $\alpha, \beta, \gamma, \delta \in \mathbb{C}$), write $\langle v, w\rangle$ in terms of $a, b, c, \alpha, \beta, \gamma, \delta$.
(b) Now take $a, b, c \in \mathbb{C}$. Show that if

$$
\left\{\begin{array}{l}
\left(v_{1}, v_{1}\right) \mapsto a, \\
\left(v_{1}, v_{2}\right) \mapsto c, \\
\left(v_{2}, v_{2}\right) \mapsto b
\end{array}\right.
$$

extends to an inner product $V \times V \longrightarrow \mathbb{C}$, then $a, b \in \mathbb{R}_{>0}$ and $|\operatorname{Re}(c)|<\sqrt{a b}$.
(c) Vice versa, prove that if $a>0$ and $b>0$ and $c \in \mathbb{C}$ satisfy $|\operatorname{Re}(c)|<\sqrt{a b}$, then

$$
\left\{\begin{array}{l}
\left(v_{1}, v_{1}\right) \mapsto a, \\
\left(v_{1}, v_{2}\right) \mapsto c, \\
\left(v_{2}, v_{2}\right) \mapsto b
\end{array}\right.
$$

extends to an inner product $V \times V \longrightarrow \mathbb{C}$.
$4 \quad(9=2+3+4 \mathrm{pts})$
Positive semidefinite matrices

Let \mathcal{X} be a nonempty set. The function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is called positive semidefinite if its associated $n \times n \operatorname{Gram}$ matrix $\left(k\left(x_{i}, x_{j}\right)\right)$ is symmetric and positive semidefinite for all $x_{1}, x_{2}, \ldots, x_{n} \in \mathcal{X}$ and all $n \in \mathbb{N}$.
(a) Suppose that $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is positive semidefinite and consider $x_{1}, x_{2}, \ldots, x_{n} \in \mathcal{X}$. Show that all eigenvalues of the Gram matrix $\left(k\left(x_{i}, x_{j}\right)\right)$ are nonnegative.
(b) Let \mathcal{V} be an inner product space over \mathbb{R} with inner product $\langle\cdot, \cdot\rangle$. Consider a function $f: \mathcal{X} \rightarrow \mathcal{V}$. Define $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ by $k(x, y):=\langle f(x), f(y)\rangle$. Prove that k is positive semidefinite.
(c) Without computing eigenvalues or determinants, show that the matrix

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 4 & 9 & 16 \\
1 & 9 & 25 & 49 \\
1 & 16 & 49 & 100
\end{array}\right]
$$

is positive semidefinite. Hint: use $f: \mathbb{R} \rightarrow \mathbb{R}^{3}$ given by $f(x)=\left(\begin{array}{c}1 \\ \sqrt{2} x \\ x^{2}\end{array}\right)$ and (b) and $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(0,1,2,3)$.

